Areas of Parallelograms and Triangles

Areas of Parallelograms In Lesson 6-2, you

learned that a parallelogram is a quadrilateral with both pairs of opposite sides parallel. Any side of a parallelogram can be called the base of a parallelogram. The height of a parallelogram is the perpendicular distance between any two parallel bases.

You can use the following postulate to develop the formula for the area of a parallelogram.

Postulate 11.1 Area Addition Postulate

The area of a region is the sum of the areas of its nonoverlapping parts.

In the figures below, a right triangle is cut off from one side of a parallelogram and translated to the other side as shown to form a rectangle with the same base and height.

Recall from Lesson 1-6 that the area of a rectangle is the product of its base and height. By the Area Addition Postulate, a parallelogram with base b and height h has the same area as a rectangle with base b and height h.

StudyTip

Heights of Figures The height of a figure can be measured by extending a base. In Example 1, the height of $\square A B C D$ that corresponds to base $\overline{D C}$ can be measured by extending $\overline{D C}$.

Example 1 Perimeter and Area of a Parallelogram

Find the perimeter and area of $\square A B C D$.

Perimeter

Since opposite sides of a parallelogram are congruent, $\overline{A B} \cong \overline{D C}$ and $\overline{B C} \cong \overline{A D}$. So $A B=4$ inches and $B C=10$ inches.

Perimeter of $\square A B C D=A B+B C+D C+A D$

$$
=4+10+4+10 \text { or } 28 \text { in. }
$$

Area

The height given, $D E$, is 5 inches. $\overline{B C}$ is the base, which measures 10 inches.

$$
A=b h
$$

$$
\begin{aligned}
A & =b h & & \text { Area of a parallelogram } \\
& =(10)(5) \text { or } 50 \mathrm{in}^{2} & & b=10 \text { and } h=5
\end{aligned}
$$

GuldedPractice

Find the and area of each parallelogram.
AA.

$1 B$.
$=$

Areas of Triangles Like the base of a parallelogram, the base of a triangle can be any side. The height of a triangle $>$ is the length of an altitude drawn to a given base.
You can use the following postulate to develop the formula
 for the area of a triangle.

Postulate 11.2 Area Congruence Postulate

If two figures are congruent, then they have the same area.

In the figures below, a parallelogram is cut in half along a diagonal to form two congruent triangles with the same base and height.

By the Area Congruence Postulate, the two congruent triangles have the same area. So, one triangle with base b and height h has half the area of a parallelogram with base b and height h.

Words
The area A of a triangle is one half the product of a base b and its corresponding height h.
Symbols $\quad A=\frac{1}{2}$ oh or $A=\frac{b h}{2}$

