reas of Trapezoids, Rhombi, and Kites

4 Areas of Trapezoids In Lesson 6-6, you learned that a trapezoid is a quadrilateral with exactly one pair of parallel sides. These parallel sides are called bases. The height of a trapezoid is the perpendicular distance between its bases.
In the figure below, a translation and rotation of the first trapezoid results in two congruent trapezoids that fit together to form a parallelogram.

2 Areas of Rhombi and Kites Recall from Lessons 6-5 - and 6-6 that a rhombus is a parallelogram with all four sides congruent and a kite is a quadrilateral with exactly two pairs of consecutive congruent sides.

rhombus

- KeyConcept Area of a Rhombus or Kite

Words The area A of a rhombus or kite is one half the product of the
lengths of its diagonals, d_{1} and d_{2}.
Symbols

* Doesnt matter which is

Find the area of each rhombus or kite.

$$
\begin{aligned}
A & =\frac{1}{2} d_{1} d_{2} \\
& =\frac{1}{2}(8)(15) \\
& =60 \mathrm{~m}^{2}
\end{aligned}
$$

Area of a kite
$d_{1}=8$ and $d_{2}=15$
Simplify. product of the height h and the sum of its bases, b_{1} and b_{2}.

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)
$$

Real-world Example 1 Area of a Trapezoid

CRAFTS One of Brianna's trapezoid-shaped totes is shown. Find the amount of material used to make the side shown.

$$
\begin{aligned}
A & =\frac{1}{2} h\left(b_{1}+b_{2}\right) & & \text { Area of a trapezoid } \\
& =\frac{1}{2}(30)(28+58) & & h=30, b_{1}=28, b_{2}=58 \\
& =1290 & & \text { Simplify. }
\end{aligned}
$$

The tote requires 1290 square centimeters.

GuidedPractice

1. AUTOMOBILES Find the area of glass AUTOM to make the windshield of a vaay $I=1 / 2(72+85) 38$
used
shown at the right.

$$
1 / 2(157) 38=2983 \mathrm{in}^{2}
$$

a. $1-8 \mathrm{~m}$

b.

Step
Find the length of each diagonal.
Since the diagonals of a rhombus bisect each other, then lengths of the diagonals are $12+12$ or 24 feet and $10+10$ or 20 feet.

Step 2 Find the area of the rhombus.

$$
\begin{aligned}
A & =\frac{1}{2} d_{1} d_{2} & & \text { Area of a mombus } \\
& =\frac{1}{2}(24)(20) & & d_{1}=24 \text { and } d_{2}=20 \\
& =240 \mathrm{ft}^{2} & & \text { Simplify. }
\end{aligned}
$$

Find the area of each rhombus or kite.

3B.

