Areas of Regular Polygons

Areas of Regular Polygons In the figure, a regular pentagon is *inscribed* in $\bigcirc P$, and $\bigcirc P$ is *circumscribed* about the pentagon. The center of a regular polygon and the radius of a regular polygon are also the center and the radius of its circumscribed circle.

A segment drawn from the center of a regular polygon perpendicular to a side of the polygon is called an **apothem**. Its length is the height of an isosceles triangle that has two radii as legs.

 $\angle APB$ is a central angle of regular pentagon *ABCDE*.

Real-World Example 2 Area of a Regular Polygon

ART Kang created the stained glass window shown. The window is a regular octagon with a side length of 15 inches and an apothem of 18.1 inches. What is the area covered by the window?

A=1/2Pa a=18.1in P=8-15 1/2(8.15)18.1 A=1086in²

> Soside

		^
Words	The area A of a regular n-gon with side	5
	length s is one hair the product of the	P
	apothem a and perimeter P.	
Symbols	$A = \frac{1}{a}(ns)$ or $A = \frac{1}{a}aP$.	