Circuit: Separable Differential Equations

Directions: Beginning in the first cell marked #1, find the requested information. To advance in the circuit, hunt for your answer and mark that cell #2. Continue working in this manner until you complete the circuit. If you do not have enough space in the cell, you may work on a separate sheet of paper and attach. You may not need to separate in every problem.

Ans: $y = 19e^{t^2}$	Ans: $y = 5e^{2t}$
#1 Solve for y	7 Solve for <i>y</i> .
$\frac{dy}{dy} = 2t$	$\frac{dy}{dy} = 2$
$\frac{dt}{dt} = 2t$	dt = 2
$\int dy = \int 2t dt$	$\int dy = \int 2 dt$
$y = t^2 + c$	y = 2t + c
Find a function that might be <i>y</i> .	Find a function that might be <i>y</i> .
Ans: $y = \frac{1}{2}t + 7$	Ans: $y = -\sqrt{3t^2 + 2t + 1}$
$\frac{3}{\frac{dy}{dt} = \frac{1}{2}t}$ Solve for y.	$\frac{10}{dt} = \frac{3t^2y + 3ty}{y} = \frac{y(3t^2 + 3t)}{y} = 3t^2 + 3t$
$\int dy = \int \frac{1}{2}t dt$	$\int dy = \int (3t^2 + 3t)dt$
$y = \frac{1}{4}t^2 + c$	$y = t^3 + \frac{3}{2}t^2 + c$
	Find a function that might be y.
Find a function that might be y.	
Ans: $y = 2t - 5$	Ans: $y = \frac{1}{3}t^3 - 4$
$\frac{\frac{8}{dy}}{\frac{dy}{dt}} = \frac{3t}{\frac{3t}{y}}$ $\int y dy = \int 3t dt$	<u>5</u> Solve for <i>y</i> . Sometimes, you'll need to factor to help separate. $\frac{dy}{dt} = 2ty - 8t = 2t(y - 4)$ $\int \frac{dy}{dt} = \int 2t dt$
$\frac{1}{2}y^2 = \frac{3}{2}t^2 + c_1$	$\int y - 4 = J$ $\ln y - 4 = t^{2} + c$
$y^{2} = 3t^{2} + c$	$y - 4 = e^{t^2 + c}$
$y = \pm \sqrt{3t^2 + c}$	$y = e^{\circ}e^{\circ} + 4$
Find a function that might be y.	Find a function that might be <i>y</i> .

Circuit: Separable Differential Equations

Ans: $y = \frac{1}{4}t^2 - 2$	Ans: $y = t^3 + \frac{3}{2}t^2 + \frac{1}{2}$
$\frac{\frac{4}{dy}}{\frac{dy}{dt}} = t^2$	$\frac{11}{\frac{dy}{dt}} = -\frac{3t}{y}$
$\int dy = \int t^2 dt$	$\int y dy = \int -3t dt$
$y = \frac{1}{3}t^3 + c$	$\frac{1}{2}y^{2} = -\frac{1}{2}t^{2} + c_{1}$ $y^{2} = -3t^{2} + c$
	$y = \pm \sqrt{-3t^2 + c}$
Find a function that might be y.	Find a function that might be <i>y</i> .
Ans: $y = -\sqrt{9 - 3t^2}$	Ans: $y = 3e^{t^2} + 4$
<u>12</u> Solve for <i>y</i> .	<u>6</u> Solve for <i>y</i> .
$\frac{dy}{dt} = 2ty$	$\frac{dy}{dt} = 2y$
$\int \frac{dy}{y} = \int 2t dt$	$\int \frac{dy}{y} = \int 2 dt$
$\ln y = t^2 + c$	$\ln y = 2t + c$
$y = e^{t^2 + c}$	$y = e^{2t+c}$
$y = e^c e^{t^2}$	$y = e^c e^{2t}$
Find a function that might be y.	Find a function that might be y.
Ans: $y = t^2 + 8$	Ans: $y = -\sqrt{3t^2 + 9}$
2 Solve for <i>y</i> .	<u>9</u> Solve for <i>y</i> .
$\frac{dy}{dt} = \frac{1}{2}$	$\frac{dy}{dt} = \frac{3t+1}{2}$
at 2	dt y
$\int dy = \int \frac{1}{2} dt$	$\int y dy = \int (3t+1)dt$
	$\frac{1}{2}y^2 = \frac{3}{2}t^2 + t + c_1$
$y = \frac{1}{2}c + c$	$y^2 = 3t^2 + 2t + c$
	$y = \pm \sqrt{3t^2 + 2t + c}$
Find a function that might be y.	Find a function that might be y.