Name

Directions: Beginning in cell #1, find the particular solution to the separable differential equation without the aid of technology. To advance in the circuit, answer the question from the new information and call that cell #2. Continue in this manner until you complete the circuit. Note: Attach additional sheets of notebook paper if the boxes are too small for you to communicate good calculus.

Answer: *e* #1 $\frac{dy}{dx} = 2x, y(1) = 7$ Particular solution: To advance in the circuit, find y when x = 2. Answer: 3 #_____ y' = -4y and y(0) = 8. Particular solution: _____ To advance in the circuit, find y(2). © Virge Cornelius 2015

Answer:
$$-2 + 9e^2$$

______ $\frac{dy}{d\theta} = 4y^2 sec^2(2\theta)$ $y\left(\frac{\pi}{8}\right) = 1$
Particular Solution: ______
To advance in the circuit, evaluate $y\left(\frac{3\pi}{8}\right)$.
Answer: 10
______ $\frac{dy}{dx} = \frac{x}{y}$, $y(-1) = 8$
Particular Solution: ______
To advance in the circuit, find y when x = 1.

© Virge Cornelius 2015

Answer: 8

$$\frac{dy}{dt} = -\frac{2t}{y}$$
, $y = -6$ when $t = 0$.
Particular Solution: ______
To advance in the circuit, find t when $y = -3\sqrt{2}$.
Answer: $\frac{1}{5}$
_____ $xy\frac{dy}{dx} = lnx$ $y(1) = -2$
Particular Solution: ______
To advance in the circuit, find x when $y = -\sqrt{5}$.
© Virge Cornelius 2015

Answer: -2

$$\frac{dW}{dt} = 100t(W + 2)$$
 $W(0) = 7$
Particular Solution: ______
To advance in the circuit, find $W(\frac{1}{5})$.
Answer: $\frac{8}{e^3}$
_____ $\frac{dA}{dt} = t + 4$; $A(2) = 11$.
Particular Solution: _____
To advance in the circuit, solve $A(t) = -5$.

© Virge Cornelius 2015