\qquad

Directions: Beginning in cell \#1, find the particular solution to the separable differential equation without the aid of technology. To advance in the circuit, answer the question from the new information and call that cell \#2. Continue in this manner until you complete the circuit. Note: Attach additional sheets of notebook paper if the boxes are too small for you to communicate good calculus.

Answer: e
\#1 $\frac{d y}{d x}=2 x, y(1)=7$

Particular solution: \qquad
To advance in the circuit, find y when $\mathrm{x}=2$.
Answer: 3
\#___ $y^{\prime}=-4 y$ and $y(0)=8$.

Particular solution: \qquad
To advance in the circuit, find $y(2)$.
© Virge Cornelius 2015

Answer: $-2+9 e^{2}$
$\# \quad \frac{d y}{d \theta}=4 y^{2} \sec ^{2}(2 \theta) \quad y\left(\frac{\pi}{8}\right)=1$

Particular Solution: \qquad
To advance in the circuit, evaluate $y\left(\frac{3 \pi}{8}\right)$.

Answer: 10
$\# _\frac{d y}{d x}=\frac{x}{y}, y(-1)=8$

Particular Solution:
To advance in the circuit, find y when $\mathrm{x}=1$.

Answer: 8
$\# \quad \frac{d y}{d t}=-\frac{2 t}{y}, y=-6$ when $t=0$.

Particular Solution:
To advance in the circuit, find t when $y=-3 \sqrt{2}$.

Answer: $\frac{1}{5}$
\# ___ $\quad x y \frac{d y}{d x}=\ln x \quad y(1)=-2$

Particular Solution:
To advance in the circuit, find x when $y=-\sqrt{5}$.

Answer: -2

$$
\# \ldots \frac{d W}{d t}=100 t(W+2) \quad W(0)=7
$$

Particular Solution: \qquad
To advance in the circuit, find $W\left(\frac{1}{5}\right)$.

Answer: $\frac{8}{e^{8}}$
$\# \quad \frac{d A}{d t}=t+4 ; \quad A(2)=11$.

Particular Solution:
To advance in the circuit, solve $A(t)=-5$.

