Instructions: In the box below are the numbers $0-9$. Complete the following and cross off the number for each answer. If you complete all problems correctly, you will cross off each number exactly once!
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lll}6 & 7 & 8\end{array}$
9
A) Consider the differential equation $\frac{d y}{d x}=\frac{3 y^{2}}{\cos (\pi x)}$. Let $y=f(x)$ be the particular solution to the differential equation with initial condition $f(3)=-1$. The equation of the line tangent to the graph of f at $(3,-1)$ can be written as $y=m x+b$. Find b.

B) A slope field for a given differential equation is shown above. There is a horizontal line with equation $y=c$ that satisfies the differential equation. Find the value of c.
C) Consider the differential equation $\frac{d y}{d x}=\frac{2 y}{x^{2}}$. Let $y=h(x)$ be the particular solution to the differential equation through $\left(2, \frac{5}{e}\right)$. Find $\lim _{x \rightarrow \infty} h(x)$.
D) The differential equation $\frac{d y}{d x}=\frac{(3-x)^{2}}{y}$ has the particular solution $y=f(x)$ with initial condition $f(-1)=4$. Find the slope of the tangent line to the graph of f at $x=-1$.
E) Let $y=g(x)$ be the particular solution to the differential equation $\frac{d y}{d x}=\frac{3 \sin (\pi x)}{2 y}$ with initial condition $g\left(\frac{1}{2}\right)=3$. Then $g(x)=\sqrt{a+b \cos (\pi x)}$ where a and b are constants. Find a.
F) The non separable differential equation $\frac{d y}{d x}=8 x-2 y$ has a linear particular solution of the form $y=m x+b$. Find $m+b$.
G) Which of the following could be a slope field for the differential equation $\frac{d y}{d x}=x-y$?
3.

7.

5.

9.

H) Let $y=f(x)$ be the particular solution to the differential equation $\frac{d y}{d x}=\frac{1}{3}(9-y)$ with the initial condition $f(1)=3$. Use the line tangent to the graph of f at $(1,3)$ to approximate $f(2.5)$.
I) For $0 \leq t \leq 3$ days, the number of weeds in a large garden is given by the function W that satisfies the differential equation $\frac{d W}{d t}=\frac{1}{12}(-318+24 W)$. At time $t=2$ days, there are 20 weeds in the garden. Find $\frac{d^{2} W}{d t^{2}}$ when $W=14$.
J) Consider the differential equation $\frac{d y}{d x}=\left(1-\frac{4}{x^{3}}\right)(y-1)^{2}$. Let $y=f(x)$ be the particular solution to the differential equation with initial condition $f(2)=-1$. Find $f(1)$.

ANSWER KEY
A) 8
B) 1
C) 5
D) 4
E) 9
F) 2
G) 7
H) 6
I) 3
J) 0

