6. Consider the differential equation $\frac{d y}{d x}=\frac{1}{3} x(y-2)^{2}$.
(a) A slope field for the given differential equation is shown below. Sketch the solution curve that passes through the point $(0,2)$, and sketch the solution curve that passes through the point $(1,0)$.

(b) Let $y=f(x)$ be the particular solution to the given differential equation with initial condition $f(1)=0$. Write an equation for the line tangent to the graph of $y=f(x)$ at $x=1$. Use your equation to approximate $f(0.7)$.
6

6
$6 \quad 6$
6
6
6
6
6
(c) Find the particular solution $y=f(x)$ to the given differential equation with initial condition $f(1)=0$.
6
6
66
6 6
6 6
7. Consider the differential equation $\frac{d y}{d x}=(3-y) \cos x$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(0)=1$. The function f is defined for all real numbers.
(a) A portion of the slope field of the differential equation is given below. Sketch the solution curve through the point $(0,1)$.

(c) Find $y=f(x)$, the particular solution to the differential equation with the initial condition $f(0)=1$.
8. Consider the differential equation $\frac{d y}{d x}=\frac{y^{2}}{x-1}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.

(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(2)=3$.

AP ${ }^{\circledR}$ CALCULUS AB 2018 SCORING GUIDELINES

Question 6

(a)

(b) $\left.\frac{d y}{d x}\right|_{(x, y)=(1,0)}=\frac{4}{3}$

An equation for the line tangent to the graph of $y=f(x)$ at $x=1$ is $y=\frac{4}{3}(x-1)$.

$$
f(0.7) \approx \frac{4}{3}(0.7-1)=-0.4
$$

(c) $\frac{d y}{d x}=\frac{1}{3} x(y-2)^{2}$
$\int \frac{d y}{(y-2)^{2}}=\int \frac{1}{3} x d x$
$\frac{-1}{y-2}=\frac{1}{6} x^{2}+C$
$\frac{1}{2}=\frac{1}{6}+C \Rightarrow C=\frac{1}{3}$
$\frac{-1}{y-2}=\frac{1}{6} x^{2}+\frac{1}{3}=\frac{x^{2}+2}{6}$
$y=2-\frac{6}{x^{2}+2}$
Note: this solution is valid for $-\infty<x<\infty$.
$2:\left\{\begin{array}{l}1: \text { solution curve through }(0,2) \\ 1: \text { solution curve through }(1,0)\end{array}\right.$
Curves must go through the indicated points, follow the given slope lines, and extend to the boundary of the slope field.
$2:\left\{\begin{array}{l}1: \text { equation of tangent line } \\ 1: \text { approximation }\end{array}\right.$

1: separation of variables
2 : antiderivatives
$5:\{1:$ constant of integration
and uses initial condition
1: solves for y
Note: $0 / 5$ if no separation of variables
Note: $\max 3 / 5$ [1-2-0-0] if no constant of integration

AP ${ }^{\circledR}$ CALCULUS AB 2014 SCORING GUIDELINES

Question 6

Consider the differential equation $\frac{d y}{d x}=(3-y) \cos x$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(0)=1$. The function f is defined for all real numbers.
(a) A portion of the slope field of the differential equation is given below. Sketch the solution curve through the point $(0,1)$.
(b) Write an equation for the line tangent to the solution curve in part (a) at the point $(0,1)$. Use the equation to approximate $f(0.2)$.
(c) Find $y=f(x)$, the particular solution to the differential equation with the initial condition $f(0)=1$.
(a)

(b) $\left.\frac{d y}{d x}\right|_{(x, y)=(0,1)}=2 \cos 0=2$

An equation for the tangent line is $y=2 x+1$.
$f(0.2) \approx 2(0.2)+1=1.4$
(c) $\frac{d y}{d x}=(3-y) \cos x$
$\int \frac{d y}{3-y}=\int \cos x d x$
$-\ln |3-y|=\sin x+C$
$-\ln 2=\sin 0+C \Rightarrow C=-\ln 2$
$-\ln |3-y|=\sin x-\ln 2$
Because $y(0)=1, y<3$, so $|3-y|=3-y$
$3-y=2 e^{-\sin x}$
$y=3-2 e^{-\sin x}$
Note: this solution is valid for all real numbers.

1 : solution curve
$2:\left\{\begin{array}{l}1: \text { tangent line equation } \\ 1: \text { approximation }\end{array}\right.$
$6:\left\{\begin{array}{l}1: \text { separation of variables } \\ 2: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { solves for } y\end{array}\right.$
Note: $\max 3 / 6$ [1-2-0-0-0] if no constant of integration

Note: $0 / 6$ if no separation of variables

AP ${ }^{\circledR}$ CALCULUS AB
 2016 SCORING GUIDELINES

Question 4

Consider the differential equation $\frac{d y}{d x}=\frac{y^{2}}{x-1}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.
(b) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(2)=3$. Write an equation for the line tangent to the graph of $y=f(x)$ at $x=2$.
Use your equation to approximate $f(2.1)$.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(2)=3$.
(a)

(b) $\left.\frac{d y}{d x}\right|_{(x, y)=(2,3)}=\frac{3^{2}}{2-1}=9$

An equation for the tangent line is $y=9(x-2)+3$.
$f(2.1) \approx 9(2.1-2)+3=3.9$
(c) $\frac{1}{y^{2}} d y=\frac{1}{x-1} d x$
$\int \frac{1}{y^{2}} d y=\int \frac{1}{x-1} d x$
$-\frac{1}{y}=\ln |x-1|+C$
$-\frac{1}{3}=\ln |2-1|+C \Rightarrow C=-\frac{1}{3}$
$-\frac{1}{y}=\ln |x-1|-\frac{1}{3}$
$y=\frac{1}{\frac{1}{3}-\ln (x-1)}$
Note: This solution is valid for $1<x<1+e^{1 / 3}$.
$2:\left\{\begin{array}{l}1: \text { zero slopes } \\ 1: \text { nonzero slopes }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { tangent line equation } \\ 1: \text { approximation }\end{array}\right.$
$5:\left\{\begin{array}{l}1: \text { separation of variables } \\ 2: \text { antiderivatives } \\ 1: \text { constant of integration and } \\ \quad \text { uses initial condition } \\ 1: \text { solves for } y\end{array}\right.$
Note: max $3 / 5$ [1-2-0-0] if no constant of integration

Note: $0 / 5$ if no separation of variables

