Connections: position, velocity and acceleration

$$
\begin{array}{ll}
\text { Known } & \text { New } \\
\frac{d}{d t}[x(t)]=v(t) & \int v(t) d t=x(t)+C \\
\frac{d^{2} x}{d t^{2}}=\frac{d}{d t}[v(t)]=a(t) & \int a(t) d t=v(t)+C
\end{array}
$$

2 - dimensional distance from origin at position $(x, y): d=\sqrt{x^{2}+y^{2}}$

1-dimensional distance from origin at position $x: \sqrt{x^{2}}=|x|$
$\int_{a}^{b} v(t) d t$ is the displacement of the particle from $t=a$ to $t=b$.

Speed: $|v|=s$
Speeding up if signs of $a \& v$ agree.
Slowing down if signs of $a \& v$ disagree.

$$
\int_{a}^{b} s(t) d t=\int_{a}^{b}|v(t)| d t \text { is the total distance traveled by the particle. }
$$

