5. Two particles move along the x-axis. For $0 \leq t \leq 8$, the position of particle P at time t is given by $x_{P}(t)=\ln \left(t^{2}-2 t+10\right)$, while the velocity of particle Q at time t is given by $v_{Q}(t)=t^{2}-8 t+15$. Particle Q is at position $x=5$ at time $t=0$.
(a) For $0 \leq t \leq 8$, when is particle P moving to the left?
(b) For $0 \leq t \leq 8$, find all times t during which the two particles travel in the same direction.
(c) Find the acceleration of particle Q at time $t=2$. Is the speed of particle Q increasing, decreasing, or neither at time $t=2$? Explain your reasoning.
(d) Find the position of particle Q the first time it changes direction.

2018 AP ${ }^{\circledR}$ CALCULUS AB FREE-RESPONSE QUESTIONS

2. A particle moves along the x-axis with velocity given by $v(t)=\frac{10 \sin \left(0.4 t^{2}\right)}{t^{2}-t+3}$ for time $0 \leq t \leq 3.5$.

The particle is at position $x=-5$ at time $t=0$.
(a) Find the acceleration of the particle at time $t=3$.
(b) Find the position of the particle at time $t=3$.
(c) Evaluate $\int_{0}^{3.5} v(t) d t$, and evaluate $\int_{0}^{3.5}|v(t)| d t$. Interpret the meaning of each integral in the context of the problem.
(d) A second particle moves along the x-axis with position given by $x_{2}(t)=t^{2}-t$ for $0 \leq t \leq 3.5$. At what time t are the two particles moving with the same velocity?

AP ${ }^{\oplus}$ CALCULUS AB 2017 SCORING GUIDELINES

Question 5

(a) $x_{P}^{\prime}(t)=\frac{2 t-2}{t^{2}-2 t+10}=\frac{2(t-1)}{t^{2}-2 t+10}$
$t^{2}-2 t+10>0$ for all t.

$$
\begin{aligned}
& x_{P}^{\prime}(t)=0 \Rightarrow t=1 \\
& x_{P}^{\prime}(t)<0 \text { for } 0 \leq t<1 .
\end{aligned}
$$

Therefore, the particle is moving to the left for $0 \leq t<1$.
(b) $v_{Q}(t)=(t-5)(t-3)$
$v_{Q}(t)=0 \Rightarrow t=3, t=5$

Both particles move in the same direction for $1<t<3$ and $5<t \leq 8$ since $v_{P}(t)=x_{P}^{\prime}(t)$ and $v_{Q}(t)$ have the same sign on these intervals.
(c) $a_{Q}(t)=v_{Q}^{\prime}(t)=2 t-8$
$a_{Q}(2)=2 \cdot 2-8=-4$
$a_{Q}(2)<0$ and $v_{Q}(2)=3>0$
At time $t=2$, the speed of the particle is decreasing because velocity and acceleration have opposite signs.
(d) Particle Q first changes direction at time $t=3$.

$$
\begin{aligned}
x_{Q}(3) & =x_{Q}(0)+\int_{0}^{3} v_{Q}(t) d t=5+\int_{0}^{3}\left(t^{2}-8 t+15\right) d t \\
& =5+\left[\frac{1}{3} t^{3}-4 t^{2}+15 t\right]_{t=0}^{t=3}=5+(9-36+45)=23
\end{aligned}
$$

$2:\left\{\begin{array}{l}1: x_{P}^{\prime}(t) \\ 1: \text { interval }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { intervals } \\ 1: \text { analysis using } v_{P}(t) \text { and } v_{Q}(t)\end{array}\right.$
Note: $1 / 2$ if only one interval with analysis

Note: $0 / 2$ if no analysis
$2:\left\{\begin{array}{l}1: a_{Q}(2) \\ 1: \text { speed decreasing with reason }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { antiderivative } \\ 1: \text { uses initial condition } \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2018 SCORING GUIDELINES

Question 2

(a) $v^{\prime}(3)=-2.118$

The acceleration of the particle at time $t=3$ is -2.118 .
(b) $x(3)=x(0)+\int_{0}^{3} v(t) d t=-5+\int_{0}^{3} v(t) d t=-1.760213$

The position of the particle at time $t=3$ is -1.760 .
(c) $\int_{0}^{3.5} v(t) d t=2.844($ or 2.843$)$
$\int_{0}^{3.5}|v(t)| d t=3.737$
The integral $\int_{0}^{3.5} v(t) d t$ is the displacement of the particle over the time interval $0 \leq t \leq 3.5$.

The integral $\int_{0}^{3.5}|v(t)| d t$ is the total distance traveled by the particle over the time interval $0 \leq t \leq 3.5$.
(d) $v(t)=x_{2}{ }^{\prime}(t)$
$v(t)=2 t-1 \Rightarrow t=1.57054$
The two particles are moving with the same velocity at time $t=1.571$ (or 1.570).

1: answer
$3:\left\{\begin{array}{l}1: \int_{0}^{3} v(t) d t \\ 1: \text { uses initial condition } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { answers } \\ 2: \text { interpretations of } \int_{0}^{3.5} v(t) d t \\ \quad \text { and } \int_{0}^{3.5}|v(t)| d t\end{array}\right.$

$$
2:\left\{\begin{array}{l}
1: \text { sets } v(t)=x_{2}{ }^{\prime}(t) \\
1: \text { answer }
\end{array}\right.
$$

