8.3 Warm-Up April 8, 2020

Let $v_{Q}(t)=t^{2}-8 t+15$ be the velocity of particle Q in miles per hour and $0 \leq t \leq 8$ where t is measured in hours.

Interpret the following in context using correct units:

$$
\begin{aligned}
& a_{Q}(2)=-4 \\
& \int_{0}^{3} v_{Q}(t) d t=18 \\
& \frac{1}{3} \int_{0}^{3} v_{Q}(t) d t=6 .
\end{aligned}
$$

8.3 Warm-Up April 8, 2020

$$
a_{Q}(2)=-4
$$

At $t=2$ hours, particle Q is accelerating at -4 miles per hour ${ }^{2}$.
 hour.

$$
\int_{0}^{3} v_{Q}(t) d t=18
$$

On the interval $[0,3]$ hours, particle Q has moved 18 miles to the right.

$$
\frac{1}{3} \int_{0}^{3} v_{Q}(t) d t=6
$$

On the interval $[0,3]$ hours, particle Q 's average velocity was 6 miles per hour.

