
Name_

Directions: Beginning in the first cell marked #1, use your knowledge of the fundamental theorem of calculus to find your answer. To advance in the circuit, hunt for your answer and mark that cell #2. Continue working in this manner until you complete the circuit. Even on problems indicated calculator active, show the set up used.

Ans: 101	Ans: 2
<u>#1</u> Given $f(2) = 5$ and $f'(x) = x + \sin x$.	Given $f(2) = 5$ and $f'(x) = x + \sin x$.
Find <i>f</i> (4).	Find <i>f</i> (0).
Ans: 11.237	Ans: $-1 - \pi$
A particle moves along a straight line and its velocity is modeled by $v(t) = 30t - 5t^3$. The particle's position is modeled by $s(t)$ and $s(0) = 4$. Find the particle's position at time $t = 3$.	A printer is publishing multiple copies of a specific document. While printing this document, ink is being used at a rate of $r(t) = 0.2(1 + \cos{(\pi x)})$, measured in ounces/min. If the printer started the job with 5 ounces of ink in its cartridge, how many ounces of ink will remain in the cartridge after 3 minutes of printing?
Ans: 26 <u>A mail clerk is making deliveries along a long</u> straight hallway. The clerk's velocity is modeled in meters/min by $v(t) = 4\pi \sin(\frac{\pi t}{5})$. If the clerk starts at one end and takes $13\frac{2}{3}$ minutes to finish deliveries, how many meters is the clerk from the starting point when finished?	Ans: 113.383 <u>A particle moves along a straight line with</u> acceleration modeled by $a(t) = 2t$. The velocity and position of the particle are modeled by $v(t)$ and $x(t)$ respectively. Given $v(0) = 4$ and $x(0) = 5$, find $x(6)$.

