Circuit - Accumulation Models

Name \qquad

Directions: Beginning in the first cell marked \#1, use your knowledge of the fundamental theorem of calculus to find your answer. To advance in the circuit, hunt for your answer and mark that cell \#2. Continue working in this manner until you complete the circuit. Even on problems indicated calculator active, show the set up used.

Ans: 91	Ans: 2
\#1_Given $f(2)=5$ and $f^{\prime}(x)=x+\sin x$.	_4__ Given $f(2)=5$ and $f^{\prime}(x)=x+\sin x$.
Find $f(4)$. $\begin{aligned} f(1) & =5+\int_{2}^{4} f^{\prime}(x) d x \\ & \approx 11.237 \end{aligned}$	Find $f(0)$. $\begin{aligned} f(0) & =5+\int_{2}^{0} f^{\prime}(x) d x \\ & \approx 1.5838 \end{aligned}$
Ans: 11.237	Ans: $-1-\pi$
2 \qquad A particle moves along a straight line and its velocity is modeled by $v(t)=30 t-5 t^{3}$. The particle's position is modeled by $s(t)$ and $s(0)=4$. Find the particle's position at time $t=3$. $\begin{gathered} S(3)=\int_{0}^{3}\left(30 t-5 t^{3}\right) d t \\ S(3)=37.75 \end{gathered}$	\qquad 10 \qquad A printer is publishing multiple copies of a specific document. While printing this document, ink is being used at a rate of $r(t)=0.2(1+\cos (\pi x))$, measured in ounces $/ \mathrm{min}$. If the printer started the job with 5 ounces of ink in its cartridge, how many ounces of ink will remain in the cartridge after 3 minutes of printing? $\begin{aligned} & 5-\int_{0}^{3} r(t) d t \\ & 4.4 \text { ounces } \end{aligned}$

Ans: 26
8_ A mail clerk is making deliveries along a long straight hallway. The clerk's velocity is modeled in meters $/ \mathrm{min}$ by $v(t)=4 \pi \sin \left(\frac{\pi t}{5}\right)$. If the clerk starts at one end and takes $13 \frac{2}{3}$ minutes to finish deliveries, how many meters is the clerk from the starting point when finished?

Ans: 113.383
14_ A particle moves along a straight line with acceleration modeled by $a(t)=2 t$. The velocity and position of the particle are modeled by $v(t)$ and $x(t)$ respectively. Given $v(0)=4$ and $x(0)=5$, find $x(6)$.

Circuit-Accumulation Models
Ans: 37.750
3_ The graph of g is shown. $f(x)=\int_{1}^{x} g(t) d t$.
g consists of a quarter circle and three line segments.
Find $f(3)$.

Ans: 12
13_ A mail clerk is making deliveries along a long straight hallway. The clerk's velocity is modeled in meters $/ \mathrm{min}$ by $v(t)=4 \pi \sin \left(\frac{\pi t}{5}\right)$. If the clerk starts at one end and takes $13 \frac{2}{3}$ minutes to finish deliveries, how many meters did the clerk walk during the $13 \frac{2}{3}$ minutes?

Ans: 33.383
-_ The graph of g is shown. $f(x)=\int_{1}^{x} g(t) d t$. g consists of a quarter circle and three line segments.

$+$
Ans: $1+\pi$
12_ The values of the areas bounded by the curve h^{\prime}, the derivative of h, and the x-axis on the interval $[a$, k] are shown. Given $h(c)=14$, find the minimum of $h(x)$.

Ans: 0
__7 The values of the areas bounded by the curve h^{\prime}, the derivative of h, and the x-axis on the interval $[a, k]$ are shown. Given $h(c)=14$, find the maximum of $h(x)$.

Ans: 1.584
5__ Oil is pumped into a tank at a rate modeled by $R(t)=3 \cos (\pi t)+5$ measured in gallons $/ \mathrm{min}$. If there are 30 gallons in the tank when the pump starts and no oil is being removed, how many gallons are in the tank after 102

Ans: 4.4
11_ The graph of f^{\prime}, the derivative of f is given, consisting of two line segments and a quarter circle.

Ans: 37.727
____ The graph of f^{\prime}, the derivative of f is given, consisting of two line segments and a quarter circle. Given that $f(1)=3$, find $f(2)=3+\int^{2} f^{\prime}(v) d x$

