Directions: Begin in cell #1. Sketch and shade the area, set up the definite integral(s), and evaluate the definite integral(s). To advance in the circuit, hunt for your answer and write 2 in the blank. Do that problem and continue in this manner until you complete the circuit. You should not need any technology, however, attach separate paper if needed.

Answer: $\frac{1}{3}e^3 - 2e^2 + 5e - \frac{23}{6}$	Answer: $\sqrt{2} - 1$
 #1 This first one is just to have you think about the idea So no calculus needed here. Just sketch and calculate. A circle is inscribed in a square. If the perimeter of the square is 40, find the area of the square not covered by the circle. 	# Find the area of the region enclosed by the graphs of $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{2}x$.
Answer: $\frac{7}{6}$	Answer: 26
# Find the area of the region enclosed by the graphs of $f(x) = x\sqrt{9 + x^2}$ and $g(x) = -x\sqrt{9 + x^2}$ from $x = 0$ to $x = 4$.	# Find the area of the region completely enclosed by the graphs of $y = x$ and $y = x^2$.

Answer:	$4\pi - 8$	Answer:	$100 - 25\pi$
#	Calculate the area of the region enclosed by the graphs of $y = \sec^2 x$ and $y = x$ for $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$.	#	Find the area in the first quadrant between the line y = 2x and the x-axis from x = 0 to x = 5.
Answer:	$\frac{32}{3}$	Answer:	$\frac{1}{3}$
#	Find the area of the region bounded by the parabolas $y = 2x - x^2$ and $y = x^2$.	#	Find the area of the first quadrant region enclosed on the left by the y-axis, above by the graph of y = cosx, and below by the graph of y = sinx.

© Virge Cornelius 2015

Answer:	<u>37</u> 12	Answer:	$\frac{\sqrt{3}}{2} - e^{-\frac{\pi}{6}}$
#	Find the area of the region enclosed by the graphs of $y = \sqrt{x}$, $y = 2 - x$, and $y = 0$.	#	Find the area of the region enclosed above by the bell-shaped curve of $y = \frac{8}{1+x^2}$ and below by the horizontal line $y = 4$.
Answer:	2	Answer:	$\frac{1}{6}$
#	Find the area of the region enclosed by the graphs of $x = 2y^2$ and $x - y = 1$.	#	Find the area of the region bounded above by $y = 5$ and below by $y = x^2 + 1$.