2016 Practice Exam
6. A hive contains 35 hundred bees at time $t=0$. During the time interval $0 \leq t \leq 4$ hours, bees enter the hive at a rate modeled by $E(t)=16 t-3 t^{2}$, where $E(t)$ is measured in hundreds of bees per hour. During the same time interval, bees leave the hive at a rate modeled by $L(t)=-2 t+15$, where $L(t)$ is measured in hundreds of bees per hour.
(a) How many bees leave the hive during the time interval $0 \leq t \leq 2$?
(b) Write an expression involving one or more integrals for the total number of bees, in hundreds, in the hive at time t for $0 \leq t \leq 4$. Find the total number of bees in the hive at $t=4$.
(c) Find the minimum number of bees in the hive for $0 \leq t \leq 4$. Justify your answer.

There are 700 people in line for a popular amusement-park ride when the ride begins operation in the morning. Once it begins operation, the ride accepts passengers until the park closes 8 hours later. While there is a line, people move onto the ride at a rate of 800 people per hour. The graph above shows the rate, $r(t)$, at which people arrive at the ride throughout the day. Time t is measured in hours from the time the ride begins operation.
(a) How many people arrive at the ride between $t=0$ and $t=3$?

Show the computations that lead to your answer.
(b) Is the number of people waiting in line to get on the ride increasing or decreasing between $t=2$ and $t=3$? Justify your answer.
(c) At what time t is the line for the ride the longest? How many people are in line at that time? Justify your answers.
(d) Write, but do not solve, an equation involving an integral expression of r whose solution gives the earliest time t at which there is no longer a line for the ride.

NO CALCULATOR ALLOWED
2006 \#4

t (seconds)	0	10	20	30	40	50	60	70	80
$v(t)$ (feet per second)	5	14	22	29	35	40	44	47	49

Rocket A has positive velocity $v(t)$ after being launched upward from an initial height of 0 feet at time $t=0$ seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \leq t \leq 80$ seconds, as shown in the table above.
(a) Find the average acceleration of rocket A over the time interval $0 \leq t \leq 80$ seconds. Indicate units of measure.
(b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) d t$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) d t$.
(c) Rocket B is launched upward with an acceleration of $a(t)=\frac{3}{\sqrt{t+1}}$ feet per second per second. At time $t=0$ seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time $t=80$ seconds? Explain your answer.

2017 active
2. When a certain grocery store opens, it has 50 pounds of bananas on a display table. Customers remove bananas from the display table at a rate modeled by

$$
f(t)=10+(0.8 t) \sin \left(\frac{t^{3}}{100}\right) \text { for } 0<t \leq 12
$$

where $f(t)$ is measured in pounds per hour and t is the number of hours after the store opened. After the store has been open for three hours, store employees add bananas to the display table at a rate modeled by

$$
g(t)=3+2.4 \ln \left(t^{2}+2 t\right) \text { for } 3<t \leq 12
$$

where $g(t)$ is measured in pounds per hour and t is the number of hours after the store opened.
(a) How many pounds of bananas are removed from the display table during the first 2 hours the store is open?
(b) Find $f^{\prime}(7)$. Using correct units, explain the meaning of $f^{\prime}(7)$ in the context of the problem.
(c) Is the number of pounds of bananas on the display table increasing or decreasing at time $t=5$? Give a reason for your answer.
(d) How many pounds of bananas are on the display table at time $t=8$?

1. A region in the plane is bounded by the graph of $y=\frac{1}{x}$, the x-axis, the line $x=m$, and the line $x=2 m$, $m>0$. The area of this region
(A) is independent of m.
(B) increases as m increases.
(C) decreases as m increases.
(D) decreases as m increases when $m<\frac{1}{2}$; increases as m increases when $m>\frac{1}{2}$.
(E) increases as m increases when $m<\frac{1}{2}$; decreases as m increases when $m>\frac{1}{2}$.
2.

The area of the shaded region in the figure above is represented by which of the following integrals?
(A) $\int_{a}^{c}(|f(x)|-|g(x)|) d x$
(B) $\int_{b}^{c} f(x) d x-\int_{a}^{c} g(x) d x$
(C) $\int_{a}^{c}(g(x)-f(x)) d x$
(D) $\int_{a}^{c}(f(x)-g(x)) d x$
(E) $\int_{a}^{b}(g(x)-f(x)) d x+\int_{b}^{c}(f(x)-g(x)) d x$

