Circuit Training - Derivatives up to explicit

```
Name
```

Directions: Beginning in the first cell marked #1, find the requested information. To advance in the circuit, hunt for your answer and mark that cell #2. Continue working in this manner until you complete the circuit.

© 2014 Mark Kiraly; Ryan HS; Denton, TX

Circuit Training – Functions: Piecewise, Abs. Value & Operations

Ans: 3	Ans: 6
# A student is finding the derivative by the limit process. The student is using $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 + 3(x+h) - 4 - x^2 - 3x + 4}{h}.$	$#_{\underline{\qquad}}$ Find $\frac{dy}{dx}$. $y = \frac{2x^2 + 4x}{x}$
If the original function is $f(x) = ax^2 + bx + c$, what is the value of <i>c</i> ?	$\frac{dy}{dx} = ?$
Ans: $\tan x + x \sec^2 x$	Ans: $\sin x + x \cos x$
$#_{\underline{\qquad}}$ Find $\frac{dy}{dx}$. $x^2y + y = 3x$	$#_{\underline{\qquad}}Find\frac{dy}{dx}. \qquad xy = \cos x$
$\frac{dy}{-2}$	dy_{-2}
$\frac{1}{dx}$	$\frac{1}{dx} = t$
Ans: $-\frac{y+\sin x}{x}$ # Find $\frac{dy}{dx}$. $x^2 + y^2 + 2\cos x = 32$	Ans: 2 # A student is finding the derivative of $f(x) = x^3$ by the limit process. The student is using $f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$.
$\frac{dy}{dx} = ?$	The student simplifies this expression to $f'(x) = \lim_{h \to 0} (Ax^B + Cx^D h^E + h^F)$ <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> & <i>F</i> are integers. What is the value of C?