\qquad
Directions: Beginning in the first cell marked \#1, find the requested information. To advance in the circuit, hunt for your answer and mark that cell \#2. Continue working in this manner until you complete the circuit.

Ans: $\cos x$ \#_1 Find $f^{\prime \prime}(x) . f(x)=x^{3}+x^{2}+4$ $f^{\prime \prime}(x)=\text { ? }$	Ans: $-\frac{x-\sin x}{y}$ \# \qquad Find $\frac{d y}{d x} . \quad y=3\left(2 x+\frac{2}{3}\right)$ $\frac{d y}{d x}=?$
Ans: -4 \# \qquad Find $\frac{d y}{d x}$. $\quad y=5 x+\cos x$ $\frac{d y}{d x}=?$	Ans: $\frac{-2}{x^{3}}$ \# \qquad Find $\frac{d y}{d x}$. $\quad y=x \sin x$ $\frac{d y}{d x}=?$
Ans: $6 x+2$ \# \qquad Find $f^{\prime}(x) . f(x)=\frac{1}{x^{2}}$ $f^{\prime}(x)=\text { ? }$	Ans: $5-\sin x$ \# \qquad Find $f^{\prime}(x)$. $f(x)=x^{2}+4 x-5$ $f^{\prime}(x)=\text { ? }$
Ans: $2 x+4$ \# \qquad Find $\frac{d y}{d x} . \quad y=x \tan x$ $\frac{d y}{d x}=?$	Ans: $\frac{3-2 x y}{x^{2}+1}$ \# \qquad $f(x)=\tan x \cos x$ $f^{\prime}(x)=?$

Circuit Training - Functions: Piecewise, Abs. Value \& Operations

Ans: 3 \# \qquad A student is finding the derivative by the limit process. The student is using $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+3(x+h)-4-x^{2}-3 x+4}{h} .$	Ans: 6 \# \qquad Find $\frac{d y}{d x} . \quad y=\frac{2 x^{2}+4 x}{x}$
If the original function is $f(x)=a x^{2}+b x+c$, what is the value of c ?	$\frac{d y}{d x}=?$
Ans: $\tan x+x \sec ^{2} x$ \# \qquad Find $\frac{d y}{d x} . \quad x^{2} y+y=3 x$	Ans: $\sin x+x \cos x$ \# \qquad Find $\frac{d y}{d x}$. $\quad x y=\cos x$
$\frac{d y}{d x}=?$	$\frac{d y}{d x}=?$

Ans: $-\frac{y+\sin x}{x}$
\#
Find $\frac{d y}{d x} . \quad x^{2}+y^{2}+2 \cos x=32$

$$
\frac{d y}{d x}=?
$$

Ans: 2
\#
A student is finding the derivative of $f(x)=x^{3}$ by the limit process.
The student is using $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$.

The student simplifies this expression to

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(A x^{B}+C x^{D} h^{E}+h^{F}\right)
$$

$A, B, C, D, E \& F$ are integers. What is the value of C ?

