
4. A cylindrical barrel with a diameter of 2 feet contains collected rainwater, as shown in the figure above. The water drains out through a valve (not shown) at the bottom of the barrel. The rate of change of the height h of the water in the barrel with respect to time t is modeled by $\frac{d h}{d t}=-\frac{1}{10} \sqrt{h}$, where h is measured in feet and t is measured in seconds. (The volume V of a cylinder with radius r and height h is $V=\pi r^{2} h$.)
(a) Find the rate of change of the volume of water in the barrel with respect to time when the height of the water is 4 feet. Indicate units of measure.
(b) When the height of the water is 3 feet, is the rate of change of the height of the water with respect to time increasing or decreasing? Explain your reasoning.

2018 AB/BC 4

(d) The height of the tree, in meters, can also be modeled by the function G, given by $G(x)=\frac{100 x}{1+x}$, where x is the diameter of the base of the tree, in meters. When the tree is 50 meters tall, the diameter of the base of the tree is increasing at a rate of 0.03 meter per year. According to this model, what is the rate of change of the height of the tree with respect to time, in meters per year, at the time when the tree is 50 meters tall?

2017 AB/BC 4

4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.
