2016 AB/BC 5

5. The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r=\frac{1}{20}\left(3+h^{2}\right)$, where $0 \leq h \leq 10$. The units of r and h are inches.
(c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is $h=3$ inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

2017 AB 6

x	$g(x)$	$g^{\prime}(x)$
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

6. Let f be the function defined by $f(x)=\cos (2 x)+e^{\sin x}$.

Let g be a differentiable function. The table above gives values of g and its derivative g^{\prime} at selected values of x. Let h be the function whose graph, consisting of five line segments, is shown in the figure above.
(a) Find the slope of the line tangent to the graph of f at $x=\pi$.
(b) Let k be the function defined by $k(x)=h(f(x))$. Find $k^{\prime}(\pi)$.
(c)Let m be the function defined by $m(x)=g(-2 x) \cdot h(x)$. Find $m^{\prime}(2)$.

