NOTE: This is not a comprehensive review. Some topics, such as exploring behaviors of implicit relations, have already been touched on and others, such as extreme values, we will highlight in the Unit 6 review.

Now, given $g(x)$, the same function shown above, has x-intercepts on the interval $[-4,4]$ at $x=-3.8$, $x=-1, x=0$, and $x=3.4$. Also, $g(x)$ has horizontal tangents at $x=-2.9, x=-0.5$, and $x=2.2$.
Finally, let $h(x)$ be a twice differentiable function such that $h^{\prime}(x)=g(x)$. Whew.

Determine the following about the function $h(x)$ on the open interval $(-4,4)$. Give your reasoning for each.

1. On what open interval(s) is $h(x)$ increasing?
2. On what open interval(s) is $h(x)$ decreasing?
3. On $(-4,4)$, what are the x-coordinates of each local (relative) maximum on $h(x)$?
4. On $(-4,4)$, what are the x-coordinates of each local (relative) minimum on $h(x)$?
5. On what open interval(s) is $h(x)$ concave up?
6. On what open interval(s) is $h(x)$ concave down?
7. What are the x-coordinates of each inflection point on $h(x)$?

Graph of f^{\prime}
5. The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the interval $[-3,4]$. The graph of f^{\prime} has horizontal tangents at $x=-1, x=1$, and $x=3$. The areas of the regions bounded by the x-axis and the graph of f^{\prime} on the intervals $[-2,1]$ and $[1,4]$ are 9 and 12 , respectively.
(a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.
(b) On what open intervals contained in $-3<x<4$ is the graph of f both concave down and decreasing? Give a reason for your answer.
(c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.
(d) Given that $f(1)=3$, write an expression for $f(x)$ that involves an integral. Find $f(4)$ and $f(-2)$.

2019 AB

t (hours)	0	0.3	1.7	2.8	4
$v_{P}(t)$ (meters per hour)	0	55	-29	55	48

2. The velocity of a particle, P, moving along the x-axis is given by the differentiable function v_{P}, where $v_{P}(t)$ is measured in meters per hour and t is measured in hours. Selected values of $v_{P}(t)$ are shown in the table above. Particle P is at the origin at time $t=0$.
(a) Justify why there must be at least one time t, for $0.3 \leq t \leq 2.8$, at which $v_{P}{ }^{\prime}(t)$, the acceleration of particle P, equals 0 meters per hour per hour.

2017 AB

x	$g(x)$	$g^{\prime}(x)$
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

Graph of h
6. Let f be the function defined by $f(x)=\cos (2 x)+e^{\sin x}$.

Let g be a differentiable function. The table above gives values of g and its derivative g^{\prime} at selected values of x. Let h be the function whose graph, consisting of five line segments, is shown in the figure above.
(d) Is there a number c in the closed interval $[-5,-3]$ such that $g^{\prime}(c)=-4$? Justify your answer.

