Volume of Spheres Suppose a sphere 2 with radius r contains infinitely many pyramids with vertices at the center of the sphere. Each pyramid has height r and base area B. The sum of the volumes of all the pyramids equals the volume of the sphere.

$$
\begin{aligned}
V & =\frac{1}{3} B_{1} r_{1}+\frac{1}{3} B_{2} r_{2}+\ldots+\frac{1}{3} B_{n} r_{n} \\
& =\frac{1}{3} r\left(B_{1}+B_{2}+\ldots+B_{n}\right) \\
& =\frac{1}{3} r\left(4 \pi r^{2}\right) \\
& =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Sum of volumes of pyramids
Distributive Property
The sum of the pyramid base areas equals the surface area of the sphere.

Simplify.

KeyConcept Volume of a Sphere
Words
The volume V of a sphere is $V=\frac{4}{3} \pi r^{3}$, where r is the radius of the sphere.

Symbols

$$
V=\frac{4}{3} \pi r^{3}
$$

Model

Examples: Volumes of Spheres and Hemispheres
Find the volume of each sphere
GuidedPractice
AA.

$1 B$.

IA. $V=4 / 3 \pi r^{3}$

IB. $V=4 / 3 \pi r^{3}$

