\qquad
Work the first problem in the space provided. Circle your answer. Find your answer among the choices. Put \#2 in the problem blank. Work that question and proceed in this manner until finished. Make sure you clearly communicate in each cell how you are getting your answer.

The table below gives values of the differentiable functions f, g, and h and their derivatives f^{\prime}, g^{\prime}, and h^{\prime} at selected values of x.

x	f	f^{\prime}	g	g^{\prime}	h	h^{\prime}
0	3	-4	-5	$1 / 2$	4	π
1	4	-3	2	4	7	5
2	-2	π	17	7	-3	2
3	5	-1	e	2	1	$-3 / 4$
4	1	2	4	$3 / 4$	-5	1
5	3	8	6	7	4	-1

Answer: $18-5 e$ \#1 Let $k(x)=f(x)+g(x)$. Find $k^{\prime}(2)$.	Answer: 4π \# \qquad Evaluate $\int_{0}^{4}\left[2+f^{\prime}(x)\right] d x$
Answer: -3 \# \qquad If g^{-1} is the inverse function of g, what is the slope of the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$?	Answer: $\frac{4-3 \pi}{9}$ \# \qquad Evaluate $r^{\prime}(3)$ where $r(x)=e^{x} g(x)$.
Answer: 38 \# \qquad Evaluate $\int_{2}^{4} h^{\prime}(x) d x$.	Answer: -6 \# \qquad Let w be the function given by $w(x)=\int_{1}^{h(x)} f(t) d t$. Find the value of $w^{\prime}(3)$.

The table below gives values of the differentiable functions f, g, and h, and their derivatives f^{\prime}, g^{\prime}, and h^{\prime}, at selected values of x.

x	f	f^{\prime}	g	g^{\prime}	h	h^{\prime}
0	3	-4	-5	$1 / 2$	4	π
1	4	-3	2	4	7	5
2	-2	π	17	7	-3	2
3	5	-1	e	2	1	$-3 / 4$
4	1	2	4	$3 / 4$	-5	1
5	3	8	6	7	4	-1

Answer: $e^{4}+2 e^{3}$ \# \qquad Let $p(x)=f(g(x))$. Find $p^{\prime}(1)$.	Answer: $\pi+7$ \# \qquad Let $j(x)=3 g(x)-2 f(x)$. Find $j^{\prime}(1)$.
Answer: 6 \# \qquad If $m(x)=h(f(x))$, what is the slope of the graph of m at $x=5$.	Answer: - 2 $\left.\# \quad \frac{d}{d x}\left[\frac{f(x)}{h(x)}\right]\right\|_{x=2}$
Answer: 18 \#___ Find $\left.\frac{d}{d x}[g(x) h(x)]\right\|_{x=1}$	Answer: $\frac{1}{4}$ \qquad Evaluate $\int_{3}^{5}\left[f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\right] d x$

