Circuit Training – Tables in Calculus

NAME_____

Work the first problem in the space provided. Circle your answer. Find your answer among the choices. Put #2 in the problem blank. Work that question and proceed in this manner until finished. Make sure you <u>clearly</u> <u>communicate</u> in each cell <u>how</u> you are getting your answer.

The table below gives values of the differentiable functions f, g, and h and their derivatives f', g', and h' at selected values of x.

x	f	f'	8	g'	h	h'
0	3	-4	-5	1/2	4	π
1	4	-3	2	4	7	5
2	-2	π	17	7	-3	2
3	5	-1	e	2	1	_3⁄4
4	1	2	4	3⁄4	-5	1
5	3	8	6	7	4	-1

Answer: 4π			
# Evaluate $\int_0^4 \left[2 + f'(x)\right] dx$.			
Answer: $\frac{4-3\pi}{2}$			
9			
# Evaluate $r'(3)$ where			
$r(x) = e^{x}g(x).$			
Answer: –6			
# Let w be the function given by $w(x) = \int_{1}^{h(x)} f(t) dt$. Find the value of $w'(3)$.			

The table below gives values of the differentiable functions f, g, and h, and their derivatives f', g', and h', at selected values of x.

x	f	f'	8	g'	h	h'
0	3	-4	-5	1/2	4	π
1	4	-3	2	4	7	5
2	-2	π	17	7	-3	2
3	5	-1	e	2	1	_3⁄4
4	1	2	4	3⁄4	-5	1
5	3	8	6	7	4	-1

Answer: $e^4 + 2e^3$	Answer: $\pi + 7$
# Let $p(x) = f(g(x))$. Find $p'(1)$.	# Let $j(x) = 3g(x) - 2f(x)$.
$\prod_{n=1}^{n} \sum_{x \in P(x)} f(x(x)) \cdot \min_{x \in P(x)} p(x)$	Find $i'(1)$.
Answer: 6	Answer: -2
# If $m(x) = h(f(x))$, what is the	$\frac{d}{d} \int f(x) dx$
slope of the graph of m at $x = 5$.	$\begin{bmatrix} \pi & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$
Answer: 18	. 1
# Find $d \left[a(x) h(x) \right]$	Answer:
$\begin{bmatrix} \pi & \dots & \dots & \dots \\ \hline dx & dx \end{bmatrix}_{x=1}^{g(x)n(x)}$	# Evaluate
	$\int_{a}^{5} \left[f(x)g'(x) + g(x)f'(x) \right] dx.$