AP Calc AB

Adapted from AP Central (with permission)

- 1. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
 - (a) Use the line tangent to the graph of W at t = 0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t = \frac{1}{4}$).
 - (b) Find $\frac{d^2W}{dt^2}$ in terms of *W*. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or

an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$.

- (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400.
- 2. Two particles move along the x-axis. For $0 \le t \le 6$, the position of particle P at time t is given by $p(t) = 2\cos(\frac{\pi}{4}t)$, while the position of particle R at time t is given by $r(t) = t^3 6t^2 + 9t + 3$.
 - (a) For $0 \le t \le 6$, find all times t during which particle R is moving to the right.
 - (b) For $0 \le t \le 6$, find all times t during which the two particles travel in opposite directions.
 - (c) Find the acceleration of particle *P* at time t = 3. Is particle *P* speeding up, slowing down, or doing neither at time t = 3? Explain your reasoning.
 - (d) There is a third particle Q that moves along the *y*-axis, perpendicular to the path of particles P and R. The position of particle Q at time t is given by q(t). At time t = 2, q(2) = 4 and q'(2) = 6. Describe how the distance between particles Q and R is changing with respect to time at t = 2.
- 3. The function f is defined by $f(x) = \sqrt{25 x^2}$ for $-5 \le x \le 5$.
 - (a) Find f'(x).
 - (b) Write an equation for the line tangent to the graph of f at x = -3.
 - (c) Let g be the function defined by $g(x) = \begin{cases} f(x) & \text{for } -5 \le x \le -3 \\ x+7 & \text{for } -3 < x \le 5. \end{cases}$

Is g continuous at x = -3? Use the definition of continuity to explain your answer.

(d) Find the value of $\int_0^5 x\sqrt{25-x^2} \, dx$.

(e) Find the value of
$$\int_{-5}^{5} (6f(x) + 3) dx$$