Adapted from AP Central (with permission)

1. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
(a) Use the line tangent to the graph of W at $t=0$ to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
(b) Find $\frac{d^{2} W}{d t^{2}}$ in terms of W. Use $\frac{d^{2} W}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t=\frac{1}{4}$.
(c) Find the particular solution $W=W(t)$ to the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ with initial condition $W(0)=1400$.
2. Two particles move along the x-axis. For $0 \leq t \leq 6$, the position of particle P at time t is given by $p(t)=2 \cos \left(\frac{\pi}{4} t\right)$, while the position of particle R at time t is given by $r(t)=t^{3}-6 t^{2}+9 t+3$.
(a) For $0 \leq t \leq 6$, find all times t during which particle R is moving to the right.
(b) For $0 \leq t \leq 6$, find all times t during which the two particles travel in opposite directions.
(c) Find the acceleration of particle P at time $t=3$. Is particle P speeding up, slowing down, or doing neither at time $t=3$? Explain your reasoning.
(d) There is a third particle Q that moves along the y-axis, perpendicular to the path of particles P and R. The position of particle Q at time t is given by $q(t)$. At time $t=2, q(2)=4$ and $q^{\prime}(2)=6$. Describe how the distance between particles Q and R is changing with respect to time at $t=2$.
3. The function f is defined by $f(x)=\sqrt{25-x^{2}}$ for $-5 \leq x \leq 5$.
(a) Find $f^{\prime}(x)$.
(b) Write an equation for the line tangent to the graph of f at $x=-3$.
(c) Let g be the function defined by $g(x)= \begin{cases}f(x) & \text { for }-5 \leq x \leq-3 \\ x+7 & \text { for }-3<x \leq 5\end{cases}$

Is g continuous at $x=-3$? Use the definition of continuity to explain your answer.
(d) Find the value of $\int_{0}^{5} x \sqrt{25-x^{2}} d x$.
(e) Find the value of $\int_{-5}^{5}(6 f(x)+3) d x$.

